

python-for-android

python-for-android is an open source build tool to let you package
Python code into standalone android APKs. These can be passed around,
installed, or uploaded to marketplaces such as the Play Store just
like any other Android app. This tool was originally developed for the
Kivy cross-platform graphical framework [http://kivy.org/#home],
but now supports multiple bootstraps and can be easily extended to
package other types of Python apps for Android.

python-for-android supports two major operations; first, it can
compile the Python interpreter, its dependencies, backend libraries
and python code for Android devices. This stage is fully customisable:
you can install as many or few components as you like. The result is
a standalone Android project which can be used to generate any number
of different APKs, even with different names, icons, Python code etc.
The second function of python-for-android is to provide a simple
interface to these distributions, to generate from such a project a
Python APK with build parameters and Python code to taste.

Contents

	Getting Started
	Concepts

	Installation

	Usage

	Advanced usage

	Build options
	Python versions

	Bootstrap options

	Requirements blacklist (APK size optimization)

	Commands
	Commands index

	General arguments

	Distribution arguments

	Working on Android
	Storage paths

	Runtime permissions

	Other common tasks

	Advanced Android API use

	Launcher
	Building

	Usage

	Release on the market

	Source code

	distutils/setuptools integration
	Have p4a apk run setup.py (replaces --requirements)

	Use your setup.py to call p4a

	Recipes
	Creating your own Recipe

	Methods and tools to help with compilation

	Using a PythonRecipe

	Using a CythonRecipe

	Using a CompiledComponentsPythonRecipe

	Using an NDKRecipe

	A Recipe template

	Examples of recipes

	The Recipe class

	Bootstraps
	Creating a new bootstrap

	Services
	Service creation

	Troubleshooting
	Debug output

	Getting help

	Debugging on Android

	Unpacking an APK

	Common errors

	Docker

	Development and Contributing
	Development model

	Versioning

	Creating a new release

	How python-for-android uses pip

	Testing an python-for-android pull request
	Common steps

	Using python-for-android commands directly from the pull request files

	Installing python-for-android using the github’s branch of the pull request

	Using buildozer with a custom app

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Getting up and running on python-for-android (p4a) is a simple process
and should only take you a couple of minutes. We’ll refer to Python
for android as p4a in this documentation.

Concepts

Basic:

	requirements: For p4a, all your app’s dependencies must be specified
via --requirements similar to the standard requirements.txt.
(Unless you specify them via a setup.py/install_requires)
All dependencies will be mapped to “recipes” if any exist, so that
many common libraries will just work. See “recipe” below for details.

	distribution: A distribution is the final “build” of your
compiled project + requirements, as an Android project assembled by
p4a that can be turned directly into an APK. p4a can contain multiple
distributions with different sets of requirements.

	build: A build refers to a compiled recipe or distribution.

	bootstrap: A bootstrap is the app backend that will start your
application. The default for graphical applications is SDL2.
You can also use e.g. the webview for web apps, or service_only/service_library for
background services. Different bootstraps have different additional
build options.

Advanced:

	recipe:
A recipe is a file telling p4a how to install a requirement
that isn’t by default fully Android compatible.
This is often necessary for Cython or C/C++-using python extensions.
p4a has recipes for many common libraries already included, and any
dependency you specified will be automatically mapped to its recipe.
If a dependency doesn’t work and has no recipe included in p4a,
then it may need one to work.

Installation

Installing p4a

p4a is now available on Pypi, so you can install it using pip:

pip install python-for-android

You can also test the master branch from Github using:

pip install git+https://github.com/kivy/python-for-android.git

Installing Dependencies

p4a has several dependencies that must be installed:

	ant

	autoconf (for libffi and other recipes)

	automake

	ccache (optional)

	cmake (required for some native code recipes like jpeg’s recipe)

	cython (can be installed via pip)

	gcc

	git

	libncurses (including 32 bit)

	libtool (for libffi and recipes)

	libssl-dev (for TLS/SSL support on hostpython3 and recipe)

	openjdk-8

	patch

	python3

	unzip

	virtualenv (can be installed via pip)

	zlib (including 32 bit)

	zip

On recent versions of Ubuntu and its derivatives you may be able to
install most of these with:

sudo dpkg --add-architecture i386
sudo apt-get update
sudo apt-get install -y build-essential ccache git zlib1g-dev python3 python3-dev libncurses5:i386 libstdc++6:i386 zlib1g:i386 openjdk-8-jdk unzip ant ccache autoconf libtool libssl-dev

On Arch Linux you should be able to run the following to
install most of the dependencies (note: this list may not be
complete):

sudo pacman -S core/autoconf core/automake core/gcc core/make core/patch core/pkgconf extra/cmake extra/jdk8-openjdk extra/python-pip extra/unzip extra/zip

On macOS:

brew install autoconf automake libtool openssl pkg-config
brew tap homebrew/cask-versions
brew install --cask homebrew/cask-versions/adoptopenjdk8

Installing Android SDK

Warning

python-for-android is often picky about the SDK/NDK versions.
Pick the recommended ones from below to avoid problems.

 Build options

Build options

This page contains instructions for using different build options.

Python versions

python-for-android supports using Python 3.7 or higher. To explicitly select a Python
version in your requirements, use e.g. --requirements=python3==3.7.1,hostpython3==3.7.1.

The last python-for-android version supporting Python2 was v2019.10.06 [https://github.com/kivy/python-for-android/archive/v2019.10.06.zip]

Python-for-android no longer supports building for Python 3 using the CrystaX
NDK. The last python-for-android version supporting CrystaX was 0.7.0 [https://github.com/kivy/python-for-android/archive/0.7.0.zip]

Bootstrap options

python-for-android supports multiple app backends with different types
of interface. These are called bootstraps.

Currently the following bootstraps are supported, but we hope that it
should be easy to add others if your project has different
requirements. Let us know [https://groups.google.com/forum/#!forum/python-android] if you’d
like help adding a new one.

sdl2

Use this with --bootstrap=sdl2, or just include the
sdl2 recipe, e.g. --requirements=sdl2,python3.

SDL2 is a popular cross-platform depelopment library, particularly for
games. It has its own Android project support, which
python-for-android uses as a bootstrap, and to which it adds the
Python build and JNI code to start it.

From the point of view of a Python program, SDL2 should behave as
normal. For instance, you can build apps with Kivy or PySDL2
and have them work with this bootstrap. It should also be possible to
use e.g. pygame_sdl2, but this would need a build recipe and doesn’t
yet have one.

Build options

The sdl2 bootstrap supports the following additional command line
options (this list may not be exhaustive):

	--private: The directory containing your project files.

	--package: The Java package name for your project. e.g. org.example.yourapp.

	--name: The app name.

	--version: The version number.

	--orientation: Usually one of portait, landscape,
sensor to automatically rotate according to the device
orientation, or user to do the same but obeying the user’s
settings. The full list of valid options is given under
android:screenOrientation in the Android documentation [https://developer.android.com/guide/topics/manifest/activity-element.html].

	--icon: A path to the png file to use as the application icon.

	--permission: A permission name for the app,
e.g. --permission VIBRATE. For multiple permissions, add
multiple --permission arguments.

	--meta-data: Custom key=value pairs to add in the application metadata.

	--presplash: A path to the image file to use as a screen while
the application is loading.

	--presplash-color: The presplash screen background color, of the
form #RRGGBB or a color name red, green, blue etc.

	--presplash-lottie: use a lottie (json) file as a presplash animation. If
used, this will replace the static presplash image.

	--wakelock: If the argument is included, the application will
prevent the device from sleeping.

	--window: If the argument is included, the application will not
cover the Android status bar.

	--blacklist: The path to a file containing blacklisted patterns
that will be excluded from the final APK. Defaults to ./blacklist.txt.

	--whitelist: The path to a file containing whitelisted patterns
that will be included in the APK even if also blacklisted.

	--add-jar: The path to a .jar file to include in the APK. To
include multiple jar files, pass this argument multiple times.

	--intent-filters: A file path containing intent filter xml to be
included in AndroidManifest.xml.

	--service: A service name and the Python script it should
run. See Arbitrary service scripts.

	--add-source: Add a source directory to the app’s Java code.

	--no-compile-pyo: Do not optimise .py files to .pyo.

	--enable-androidx: Enable AndroidX support library.

webview

You can use this with --bootstrap=webview, or include the
webviewjni recipe, e.g. --requirements=webviewjni,python3.

The webview bootstrap gui is, per the name, a WebView displaying a
webpage, but this page is hosted on the device via a Python
webserver. For instance, your Python code can start a Flask
application, and your app will display and allow the user to navigate
this website.

Note

Your Flask script must start the webserver without
:code:debug=True. Debug mode doesn’t seem to work on
Android due to use of a subprocess.

 Commands

Commands

This page documents all the commands and options that can be passed to
toolchain.py.

Commands index

The commands available are the methods of the ToolchainCL class,
documented below. They may have options of their own, or you can
always pass general arguments or distribution arguments to any
command (though if irrelevant they may not have an effect).

General arguments

These arguments may be passed to any command in order to modify its
behaviour, though not all commands make use of them.

	--debug

	Print extra debug information about the build, including all compilation output.

	--sdk_dir

	The filepath where the Android SDK is installed. This can
alternatively be set in several other ways.

	--android_api

	The Android API level to target; python-for-android will check if
the platform tools for this level are installed.

	--ndk_dir

	The filepath where the Android NDK is installed. This can
alternatively be set in several other ways.

	--ndk_version

	The version of the NDK installed, important because the internal
filepaths to build tools depend on this. This can alternatively be
set in several other ways, or if your NDK dir contains a RELEASE.TXT
containing the version this is automatically checked so you don’t
need to manually set it.

Distribution arguments

p4a supports several arguments used for specifying which compiled
Android distribution you want to use. You may pass any of these
arguments to any command, and if a distribution is required they will
be used to load, or compile, or download this as necessary.

None of these options are essential, and in principle you need only
supply those that you need.

	--name NAME

	The name of the distribution. Only one distribution with a given name can be created.

	--requirements LIST,OF,REQUIREMENTS

	The recipes that your
distribution must contain, as a comma separated list. These must be
names of recipes or the pypi names of Python modules.

	--force-build BOOL

	Whether the distribution must be compiled from scratch.

	--arch

	The architecture to build for. You can specify multiple architectures to build for
at the same time. As an example p4a ... --arch arm64-v8a --arch armeabi-v7a ...
will build a distribution for both arm64-v8a and armeabi-v7a.

	--bootstrap BOOTSTRAP

	The Java bootstrap to use for your application. You mostly don’t
need to worry about this or set it manually, as an appropriate
bootstrap will be chosen from your --requirements. Current
choices are sdl2 (used with Kivy and most other apps) or webview.

Note

These options are preliminary. Others will include toggles
for allowing downloads, and setting additional directories
from which to load user dists.

 Working on Android

Working on Android

This page gives details on accessing Android APIs and managing other
interactions on Android.

Storage paths

If you want to store and retrieve data, you shouldn’t just save to
the current directory, and not hardcode /sdcard/ or some other
path either - it might differ per device.

Instead, the android module which you can add to your –requirements
allows you to query the most commonly required paths:

from android.storage import app_storage_path
settings_path = app_storage_path()

from android.storage import primary_external_storage_path
primary_ext_storage = primary_external_storage_path()

from android.storage import secondary_external_storage_path
secondary_ext_storage = secondary_external_storage_path()

app_storage_path() gives you Android’s so-called “internal storage”
which is specific to your app and cannot seen by others or the user.
It compares best to the AppData directory on Windows.

primary_external_storage_path() returns Android’s so-called
“primary external storage”, often found at /sdcard/ and potentially
accessible to any other app.
It compares best to the Documents directory on Windows.
Requires Permission.WRITE_EXTERNAL_STORAGE to read and write to.

secondary_external_storage_path() returns Android’s so-called
“secondary external storage”, often found at /storage/External_SD/.
It compares best to an external disk plugged to a Desktop PC, and can
after a device restart become inaccessible if removed.
Requires Permission.WRITE_EXTERNAL_STORAGE to read and write to.

Warning

Even if secondary_external_storage_path returns a path
the external sd card may still not be present.
Only non-empty contents or a successful write indicate that it is.

 Launcher

Launcher

The Kivy Launcher is an Android application that can run any Kivy app
stored in the kivy folder on the SD Card. You can download the latest stable
version for your android device from the
Play Store [https://play.google.com/store/apps/details?id=org.kivy.pygame].

The stable launcher comes with various Python packages and
permissions, usually listed in the description in the store. Those
aren’t always enough for an application to run or even launch if you
work with other dependencies that are not packaged.

The Kivy Launcher is intended for quick and simple testing. For
anything more advanced we recommend building your own APK with
python-for-android.

Building

The Kivy Launcher is built using python-for-android. To get the most recent
versions of packages you need to clean them first, so that the packager won’t
grab an old (cached) package instead of a fresh one.

p4a clean_download_cache requirements
p4a clean_dists && p4a clean_builds
p4a apk --requirements=requirements \
 --permission PERMISSION \
 --package=the.package.name \
 --name="App name" \
 --version=x.y.z \
 --android_api XY \
 --bootstrap=sdl2 \
 --launcher \
 --minsdk 13

Note

–minsdk 13 is necessary for the new toolchain, otherwise you’ll be able
to run apps only in landscape orientation.

 distutils/setuptools integration

distutils/setuptools integration

Have p4a apk run setup.py (replaces --requirements)

If your project has a setup.py file, then it can be executed by
p4a when your app is packaged such that your app properly ends up
in the packaged site-packages. (Use --use-setup-py to enable this,
--ignore-setup-py to prevent it)

This is functionality to run setup.py INSIDE `p4a apk`, as opposed
to the other section below, which is about running
p4a inside setup.py.

This however has these caveats:

	Only your ``main.py`` from your app’s ``–private`` data is copied
into the .apk! Everything else needs to be installed by your
setup.py into the site-packages, or it won’t be packaged.

	All dependencies that map to recipes can only be pinned to exact
versions, all other constraints will either just plain not work
or even cause build errors. (Sorry, our internal processing is
just not smart enough to honor them properly at this point)

	The dependency analysis at the start may be quite slow and delay
your build

Reasons why you would want to use a setup.py to be processed (and
omit specifying --requirements):

	You want to use a more standard mechanism to specify dependencies
instead of --requirements

	You already use a setup.py for other platforms

	Your application imports itself
in a way that won’t work unless installed to site-packages)

Reasons not to use a setup.py (that is to use the usual
--requirements mechanism instead):

	You don’t use a setup.py yet, and prefer the simplicity of
just specifying --requirements

	Your setup.py assumes a desktop platform and pulls in
Android-incompatible dependencies, and you are not willing
to change this, or you want to keep it separate from Android
deployment for other organizational reasons

	You need data files to be around that aren’t installed by
your setup.py into the site-packages folder

Use your setup.py to call p4a

Instead of running p4a via the command line, you can call it via
setup.py instead, by it integrating with distutils and setup.py.

This is functionality to run p4a INSIDE setup.py, as opposed
to the other section above, which is about running
setup.py inside `p4a apk`.

The base command is:

python setup.py apk

The files included in the APK will be all those specified in the
package_data argument to setup. For instance, the following
example will include all .py and .png files in the testapp
folder:

from distutils.core import setup
from setuptools import find_packages

setup(
 name='testapp_setup',
 version='1.1',
 description='p4a setup.py example',
 author='Your Name',
 author_email='youremail@address.com',
 packages=find_packages(),
 options=options,
 package_data={'testapp': ['*.py', '*.png']}
)

The app name and version will also be read automatically from the
setup.py.

The Android package name uses org.test.lowercaseappname
if not set explicitly.

The --private argument is set automatically using the
package_data. You should not set this manually.

The target architecture defaults to --armeabi.

All of these automatic arguments can be overridden by passing them manually on the command line, e.g.:

python setup.py apk --name="Testapp Setup" --version=2.5

Adding p4a arguments in setup.py

Instead of providing extra arguments on the command line, you can
store them in setup.py by passing the options parameter to
setup. For instance:

from distutils.core import setup
from setuptools import find_packages

options = {'apk': {'debug': None, # use None for arguments that don't pass a value
 'requirements': 'sdl2,pyjnius,kivy,python3',
 'android-api': 19,
 'ndk-dir': '/path/to/ndk',
 'dist-name': 'bdisttest',
 }}

packages = find_packages()
print('packages are', packages)

setup(
 name='testapp_setup',
 version='1.1',
 description='p4a setup.py example',
 author='Your Name',
 author_email='youremail@address.com',
 packages=find_packages(),
 options=options,
 package_data={'testapp': ['*.py', '*.png']}
)

These options will be automatically included when you run python
setup.py apk. Any options passed on the command line will override
these values.

Adding p4a arguments in setup.cfg

You can also provide p4a arguments in the setup.cfg file, as normal
for distutils. The syntax is:

[apk]

argument=value

requirements=sdl2,kivy

 Recipes

Recipes

This page describes how python-for-android (p4a) compilation recipes
work, and how to build your own. If you just want to build an APK,
ignore this and jump straight to the Getting Started.

Recipes are special scripts for compiling and installing different programs
(including Python modules) into a p4a distribution. They are necessary
to take care of compilation for any compiled components, as these must
be compiled for Android with the correct architecture.

python-for-android comes with many recipes for popular modules. No
recipe is necessary for Python modules which have no
compiled components; these are installed automatically via pip.
If you are new to building recipes, it is recommended that you first
read all of this page, at least up to the Recipe reference
documentation. The different recipe sections include a number of
examples of how recipes are built or overridden for specific purposes.

Creating your own Recipe

The formal reference documentation of the Recipe
class can be found in the Recipe class section and below.

Check the recipe template section for a template
that combines all of these ideas, in which you can replace whichever
components you like.

The basic declaration of a recipe is as follows:

class YourRecipe(Recipe):

 url = 'http://example.com/example-{version}.tar.gz'
 version = '2.0.3'
 md5sum = '4f3dc9a9d857734a488bcbefd9cd64ed'

 patches = ['some_fix.patch'] # Paths relative to the recipe dir

 depends = ['kivy', 'sdl2'] # These are just examples
 conflicts = ['generickndkbuild']

recipe = YourRecipe()

See the Recipe class documentation for full
information about each parameter.

These core options are vital for all recipes, though the url may be
omitted if the source is somehow loaded from elsewhere.

You must include recipe = YourRecipe(). This variable is accessed
when the recipe is imported.

Note

The url includes the {version} tag. You should only
access the url with the versioned_url property, which
replaces this with the version attribute.

 Bootstraps

Bootstraps

This page is about creating new bootstrap backends. For build options
of existing bootstraps (i.e. with SDL2, Webview, etc.), see
build options.

python-for-android (p4a) supports multiple bootstraps. These fulfill a
similar role to recipes, but instead of describing how to compile a
specific module they describe how a full Android project may be put
together from a combination of individual recipes and other
components such as Android source code and various build files.

This page describes the basics of how bootstraps work so that you can
create and use your own if you like, making it easy to build new kinds
of Python projects for Android.

Creating a new bootstrap

A bootstrap class consists of just a few basic components, though one of them
must do a lot of work.

For instance, the SDL2 bootstrap looks like the following:

from pythonforandroid.toolchain import Bootstrap, shprint, current_directory, info, warning, ArchAndroid, logger, info_main, which
from os.path import join, exists
from os import walk
import glob
import sh

class SDL2Bootstrap(Bootstrap):
 name = 'sdl2'

 recipe_depends = ['sdl2']

 def run_distribute(self):
 # much work is done here...

The declaration of the bootstrap name and recipe dependencies should
be clear. However, the run_distribute method must do all the
work of creating a build directory, copying recipes etc into it, and
adding or removing any extra components as necessary.

If you’d like to create a bootstrap, the best resource is to check the
existing ones in the p4a source code. You can also contact the
developers if you have problems or questions.

 Services

Services

python-for-android supports the use of Android Services, background
tasks running in separate processes. These are the closest Android
equivalent to multiprocessing on e.g. desktop platforms, and it is not
possible to use normal multiprocessing on Android. Services are also
the only way to run code when your app is not currently opened by the user.

Services must be declared when building your APK. Each one
will have its own main.py file with the Python script to be run.
Please note that python-for-android explicitly runs services as separated
processes by having a colon “:” in the beginning of the name assigned to
the android:process attribute of the AndroidManifest.xml file.
This is not the default behavior, see Android service documentation [https://developer.android.com/guide/topics/manifest/service-element].
You can communicate with the service process from your app using e.g.
osc [https://pypi.python.org/pypi/python-osc] or (a heavier option)
twisted [https://twistedmatrix.com/trac/].

Service creation

There are two ways to have services included in your APK.

Service folder

This is the older method of handling services. It is
recommended to use the second method (below) where possible.

Create a folder named service in your app directory, and add a
file service/main.py. This file should contain the Python code
that you want the service to run.

To start the service, use the start_service function from the
android module (you may need to add android to your app
requirements):

import android
android.start_service(title='service name',
 description='service description',
 arg='argument to service')

Arbitrary service scripts

This method is recommended for non-trivial use of services as it is
more flexible, supporting multiple services and a wider range of
options.

To create the service, create a python script with your service code
and add a --service=myservice:PATH_TO_SERVICE_PY argument
when calling python-for-android, or in buildozer.spec, a
services = myservice:PATH_TO_SERVICE_PY [app] setting.

The myservice name before the colon is the name of the service
class, via which you will interact with it later.

The PATH_TO_SERVICE_PY is the relative path to the service entry point (like services/myservice.py)

	You can optionally specify the following parameters:

	
	:foreground for launching a service as an Android foreground service

	:sticky for launching a service that gets restarted by the Android OS on exit/error

Full command with all the optional parameters included would be:
--service=myservice:services/myservice.py:foreground:sticky

You can add multiple
--service arguments to include multiple services, or separate
them with a comma in buildozer.spec, all of which you will later be
able to stop and start from your app.

To run the services (i.e. starting them from within your main app
code), you must use PyJNIus to interact with the java class
python-for-android creates for each one, as follows:

from jnius import autoclass
service = autoclass('your.package.domain.package.name.ServiceMyservice')
mActivity = autoclass('org.kivy.android.PythonActivity').mActivity
argument = ''
service.start(mActivity, argument)

Here, your.package.domain.package.name refers to the package identifier
of your APK.

If you are using buildozer, the identifier is set by the package.name
and package.domain values in your buildozer.spec file.
The name of the service is ServiceMyservice, where Myservice
is the name specied by one of the services values, but with the first
letter upper case.

If you are using python-for-android directly, the identifier is set by the --package
argument to python-for-android. The name of the service is ServiceMyservice,
where Myservice is the identifier that was previously passed to the --service
argument, but with the first letter upper case. You must also pass the
argument parameter even if (as here) it is an empty string. If you
do pass it, the service can make use of this argument.

The service argument is made available to your service via the
‘PYTHON_SERVICE_ARGUMENT’ environment variable. It is exposed as a simple
string, so if you want to pass in multiple values, we would recommend using
the json module to encode and decode more complex data.

from os import environ
argument = environ.get('PYTHON_SERVICE_ARGUMENT', '')

Services support a range of options and interactions not yet
documented here but all accessible via calling other methods of the
service reference.

Note

The app root directory for Python imports will be in the app
root folder even if the service file is in a subfolder. To import from
your service folder you must use e.g. import service.module
instead of import module, if the service file is in the
service/ folder.

 Troubleshooting

Troubleshooting

Debug output

Add the --debug option to any python-for-android command to see
full debug output including the output of all the external tools used
in the compilation and packaging steps.

If reporting a problem by email or Discord, it is usually helpful to
include this full log, e.g. via a pastebin [http://paste.ubuntu.com/] or Github gist [https://gist.github.com/].

Getting help

python-for-android is managed by the Kivy Organisation, and you can
get help with any problems using the same channels as Kivy itself:

	by email to the kivy-users Google group [https://groups.google.com/forum/#!forum/kivy-users]

	on #support Discord channel [https://chat.kivy.org/]

If you find a bug, you can also post an issue on the
python-for-android Github page [https://github.com/kivy/python-for-android].

Debugging on Android

When a python-for-android APK doesn’t work, often the only indication
that you get is that it closes. It is important to be able to find out
what went wrong.

python-for-android redirects Python’s stdout and stderr to the Android
logcat stream. You can see this by enabling developer mode on your
Android device, enabling adb on the device, connecting it to your PC
(you should see a notification that USB debugging is connected) and
running adb logcat. If adb is not in your PATH, you can find it at
/path/to/Android/SDK/platform-tools/adb, or access it through
python-for-android with the shortcut:

python-for-android logcat

or:

python-for-android adb logcat

Running logcat command gives a lot of information about what Android is
doing. You can usually see important lines by using logcat’s built in
functionality to see only lines with the python tag (or just
grepping this).

When your app crashes, you’ll see the normal Python traceback here, as
well as the output of any print statements etc. that your app
runs. Use these to diagnose the problem just as normal.

The adb command passes its arguments straight to adb itself, so you
can also do other debugging tasks such as python-for-android adb
devices to get the list of connected devices.

For further information, see the Android docs on adb [http://developer.android.com/intl/zh-cn/tools/help/adb.html], and
on logcat [http://developer.android.com/intl/zh-cn/tools/help/logcat.html] in
particular.

Unpacking an APK

It is sometimes useful to unpack a packaged APK to see what is inside,
especially when debugging python-for-android itself.

APKs are just zip files, so you can extract the contents easily:

unzip YourApk.apk

At the top level, this will always contain the same set of files:

$ ls
AndroidManifest.xml classes.dex META-INF res
assets lib YourApk.apk resources.arsc

The user app data (code, images, fonts ..) is packaged into a single tarball contained in the assets folder:

$ cd assets
$ ls
private.tar

private.tar is a tarball containing all your packaged
data. Extract it:

$ tar xf private.tar

This will reveal all the user app data (the files shown below are from the touchtracer demo):

$ ls
README.txt android.txt icon.png main.pyc p4a_env_vars.txt particle.png
private.tar touchtracer.kv

Due to how We’re required to ship ABI-specific things in Android App Bundle,
the Python installation is packaged separately, as (most of it) is ABI-specific.

For example, the Python installation for arm64-v8a is available in lib/arm64-v8a/libpybundle.so

libpybundle.so is a tarball (but named like a library for packaging requirements), that contains our _python_bundle:

$ tar xf libpybundle.so
$ cd _python_bundle
$ ls
modules site-packages stdlib.zip

Common errors

The following are common problems and resolutions that users have reported.

AttributeError: ‘AnsiCodes’ object has no attribute ‘LIGHTBLUE_EX’

This occurs if your version of colorama is too low, install version
0.3.3 or higher.

If you install python-for-android with pip or via setup.py, this
dependency should be taken care of automatically.

AttributeError: ‘Context’ object has no attribute ‘hostpython’

This is a known bug in some releases. To work around it, add your
python requirement explicitly,
e.g. --requirements=python3,kivy. This also applies when using
buildozer, in which case add python3 to your buildozer.spec requirements.

linkname too long

This can happen when you try to include a very long filename, which
doesn’t normally happen but can occur accidentally if the p4a
directory contains a .buildozer directory that is not excluded from
the build (e.g. if buildozer was previously used). Removing this
directory should fix the problem, and is desirable anyway since you
don’t want it in the APK.

Requested API target 19 is not available, install it with the SDK android tool

This means that your SDK is missing the required platform tools. You
need to install the platforms;android-19 package in your SDK,
using the android or sdkmanager tools (depending on SDK
version).

If using buildozer this should be done automatically, but as a
workaround you can run these from
~/.buildozer/android/platform/android-sdk-20/tools/android.

ModuleNotFoundError: No module named ‘_ctypes’

You do not have the libffi headers available to python-for-android, so you need to install them. On Ubuntu and derivatives these come from the libffi-dev package.

After installing the headers, clean the build (p4a clean builds, or with buildozer delete the .buildozer directory within your app directory) and run python-for-android again.

SSLError(“Can’t connect to HTTPS URL because the SSL module is not available.”)

Your hostpython3 was compiled without SSL support. You need to install the SSL development files before rebuilding the hostpython3 recipe.
Remember to always clean the build before rebuilding (p4a clean builds, or with buildozer buildozer android clean).

On Ubuntu and derivatives:

apt install libssl-dev
p4a clean builds # or with: buildozer `buildozer android clean

On macOS:

brew install openssl
sudo ln -sfn /usr/local/opt/openssl /usr/local/ssl
p4a clean builds # or with: buildozer `buildozer android clean

 Docker

Docker

Currently we use a containerized build for testing Python for Android recipes.
Docker supports three big platforms either directly with the kernel or via
using headless VirtualBox and a small distro to run itself on.

While this is not the actively supported way to build applications, if you are
willing to play with the approach, you can use the Dockerfile to build
the Docker image we use for CI builds and create an Android
application with that in a container. This approach allows you to build Android
applications on all platforms Docker engine supports. These steps assume you
already have Docker preinstalled and set up.

Warning

This approach is highly space unfriendly! The more layers (commit) or
even Docker images (build) you create the more space it’ll consume.
Within the Docker image there is Android SDK and NDK + various dependencies.
Within the custom diff made by building the distribution there is another
big chunk of space eaten. The very basic stuff such as a distribution with:
CPython 3, setuptools, Python for Android android module, SDL2 (+ deps),
PyJNIus and Kivy takes almost 2 GB. Check your free space first!

 Development and Contributing

Development and Contributing

The development of python-for-android is managed by the Kivy team via
Github [https://github.com/kivy/python-for-android].

Issues and pull requests are welcome via the integrated issue tracker [https://github.com/kivy/python-for-android/issues].

Read on for more information about how we manage development and
releases, but don’t worry about the details! Pull requests are welcome
and we’ll deal with the rest.

Development model

python-for-android is developed using the following model:

	The master branch always represents the latest stable release.

	The develop branch is the most up to date with new contributions.

	Releases happen periodically, and consist of merging the current develop branch into master.

For reference, this is based on a Git flow [https://nvie.com/posts/a-successful-git-branching-model/] model,
although we don’t follow this religiously.

Versioning

python-for-android releases currently use calendar versioning [https://calver.org/]. Release numbers are of the form
YYYY.MM.DD. We aim to create a new release every four weeks, but more
frequent releases are also possible.

We use calendar versioning because in practice, changes in
python-for-android are often driven by updates or adjustments in the
Android build tools. It’s usually best for users to be working from
the latest release. We try to maintain backwards compatibility even
while internals are changing.

Creating a new release

New releases follow these steps:

	Create a new branch release-YYYY.MM.DD based on the develop branch.
- git checkout -b release-YYYY.MM.DD develop

	Create a Github pull request to merge release-YYYY.MM.DD into master.

	Complete all steps in the release checklist,
and document this in the pull request (copy the checklist into the PR text)

At this point, wait for reviewer approval and conclude any discussion that arises. To complete the release:

	Merge the release branch to the master branch.

	Also merge the release branch to the develop branch.

	Tag the release commit in master, with tag vYYYY.MM.DD. Include a short summary of the changes.

	Release distributions and PyPI upload should be handled by the CI [https://github.com/kivy/python-for-android/blob/v2020.04.29/.travis.yml#L60-L70].

	Add to the Github release page (see e.g. this example [https://github.com/kivy/python-for-android/releases/tag/v2019.06.06]):
- The python-for-android README summary
- A short list of major changes in this release, if any
- A changelog summarising merge commits since the last release
- The release sdist and wheel(s)

Release checklist

- [] Check that the builds are passing
 - [] [GitHub Action](https://github.com/kivy/python-for-android/actions)
- [] Run the tests locally via `tox`: this performs some long-running tests that are skipped on github-actions.
- [] Build and run the [on_device_unit_tests](https://github.com/kivy/python-for-android/tree/master/testapps/on_device_unit_tests) app using buildozer. Check that they all pass.
- [] Build (or download from github actions) and run the following [testapps](https://github.com/kivy/python-for-android/tree/master/testapps/on_device_unit_tests) for arch `armeabi-v7a` and `arm64-v8a`:
 - [] on_device_unit_tests
 - [] `armeabi-v7a` (`cd testapps/on_device_unit_tests && PYTHONPATH=.:../../ python3 setup.py apk --ndk-dir=<your-ndk-dir> --sdk-dir=<your-sdk-dir> --arch=armeabi-v7a --debug`)
 - [] `arm64-v8a` (`cd testapps/on_device_unit_tests && PYTHONPATH=.:../../ python3 setup.py apk --ndk-dir=<your-ndk-dir> --sdk-dir=<your-sdk-dir> --arch=arm64-v8a --debug`)
- [] Check that the version number is correct

How python-for-android uses pip

Last update: July 2019

This section is meant to provide a quick summary how
p4a (=python-for-android) uses pip and python packages in
its build process.
It is written for a python
packagers point of view, not for regular end users or
contributors, to assist with making pip developers and
other packaging experts aware of p4a’s packaging needs.

Please note this section just attempts to neutrally list the
current mechanisms, so some of this isn’t necessarily meant
to stay but just how things work inside p4a in
this very moment.

Basic concepts

(This part repeats other parts of the docs, for the sake of
making this a more independent read)

p4a builds & packages a python application for use on Android.
It does this by providing a Java wrapper, and for graphical applications
an SDL2-based wrapper which can be used with the kivy UI toolkit if
desired (or alternatively just plain PySDL2). Any such python application
will of course have further library dependencies to do its work.

p4a supports two types of package dependencies for a project:

Recipe: install script in custom p4a format. Can either install
C/C++ or other things that cannot be pulled in via pip, or things
that can be installed via pip but break on android by default.
These are maintained primarily inside the p4a source tree by p4a
contributors and interested folks.

Python package: any random pip python package can be directly
installed if it doesn’t need adjustments to work for Android.

p4a will map any dependency to an internal recipe if present, and
otherwise use pip to obtain it regularly from whatever external source.

Install process regarding packages

The install/build process of a p4a project, as triggered by the
p4a apk command, roughly works as follows in regards to python
packages:

	The user has specified a project folder to install. This is either
just a folder with python scripts and a main.py, or it may
also have a pyproject.toml for a more standardized install.

	Dependencies are collected: they can be either specified via
--requirements as a list of names or pip-style URLs, or p4a
can optionally scan them from a project folder via the
pep517 library (if there is a pyproject.toml or setup.py).

	The collected dependencies are mapped to p4a’s recipes if any are
available for them, otherwise they’re kept around as external
regular package references.

	All the dependencies mapped to recipes are built via p4a’s internal
mechanisms to build these recipes. (This may or may not indirectly
use pip, depending on whether the recipe wraps a python package
or not and uses pip to install or not.)

	If the user has specified to install the project in standardized
ways, then the setup.py/whatever build system
of the project will be run. This happens with cross compilation set up
(CC/CFLAGS/… set to use the
proper toolchain) and a custom site-packages location.
The actual comand is a simple pip install . in the project folder
with some extra options: e.g. all dependencies that were already
installed by recipes will be pinned with a -c constraints file
to make sure pip won’t install them, and build isolation will be
disabled via --no-build-isolation so pip doesn’t reinstall
recipe-packages on its own.

If the user has not specified to use standardized build approaches,
p4a will simply install all the remaining dependencies that weren’t
mapped to recipes directly and just plain copy in the user project
without installing. Any setup.py or pyproject.toml of the user
project will then be ignored in this step.

	Google’s gradle is invoked to package it all up into an .apk.

Overall process / package relevant notes for p4a

Here are some common things worth knowing about python-for-android’s
dealing with python packages:

	Packages will work fine without a recipe if they would also build
on Linux ARM, don’t use any API not available in the NDK if they
use native code, and don’t use any weird compiler flags the toolchain
doesn’t like if they use native code. The package also needs to
work with cross compilation.

	There is currently no easy way for a package to know it is being
cross-compiled (at least that we know of) other than examining the
CC compiler that was set, or that it is being cross-compiled for
Android specifically. If that breaks a package it currently needs
to be worked around with a recipe.

	If a package does not work, p4a developers will often create a
recipe instead of getting upstream to fix it because p4a simply
is too niche.

	Most packages without native code will just work out of the box.
Many with native code tend not to, especially if complex, e.g. numpy.

	Anything mapped to a p4a recipe cannot be just reinstalled by pip,
specifically also not inside build isolation as a dependency.
(It may work if the patches of the recipe are just relevant
to fix runtime issues.)
Therefore as of now, the best way to deal with this limitation seems
to be to keep build isolation always off.

Ideas for the future regarding packaging

	We in overall prefer to use the recipe mechanism less if we can.
In overall the recipes are just a collection of workarounds.
It may look quite hacky from the outside, since p4a
version pins recipe-wrapped packages usually to make the patches reliably
apply. This creates work for the recipes to be kept up-to-date, and
obviously this approach doesn’t scale too well. However, it has ended
up as a quite practical interims solution until better ways are found.

	Obviously, it would be nice if packages could know they are being
cross-compiled, and for Android specifically. We aren’t currently aware
of a good mechanism for that.

	If pip could actually run the recipes (instead of p4a wrapping pip and
doing so) then this might even allow build isolation to work - but
this might be too complex to get working. It might be more practical
to just gradually reduce the reliance on recipes instead and make
more packages work out of the box. This has been done e.g. with
improvements to the cross-compile environment being set up automatically,
and we’re open for any ideas on how to improve this.

 Testing an python-for-android pull request

Testing an python-for-android pull request

In order to test a pull request, we recommend to consider the following points:

	of course, check if the overall thing makes sense

	is the CI passing? if not what specifically fails

	is it working locally at compile time?

	is it working on device at runtime?

This document will focus on the third point:
is it working locally at compile time? so we will give some hints about how
to proceed in order to create a local copy of the pull requests and build an
apk. We expect that the contributors has enough criteria/knowledge to perform
the other steps mentioned, so let’s begin…

To create an apk from a python-for-android pull request we contemplate three
possible scenarios:

	using python-for-android commands directly from the pull request files
that we want to test, without installing it (the recommended way for most
of the test cases)

	installing python-for-android using the github’s branch of the pull request

	using buildozer and a custom app

We will explain the first two methods using one of the distributed
python-for-android test apps and we assume that you already have the
python-for-android dependencies installed. For the buildozer method we also
expect that you already have a a properly working app to test and a working
installation/configuration of buildozer. There is one step that it’s shared
with all the testing methods that we propose in here…we named it
Common steps.

Common steps

The first step to do it’s to get a copy of the pull request, we can do it of
several ways, and that it will depend of the circumstances but all the methods
presented here will do the job, so…

Fetch the pull request by number

For the example, we will use 1901 for the example) and the pull request
branch that we will use is feature-fix-numpy, then you will use a variation
of the following git command:
git fetch origin pull/<#>/head:<local_branch_name>, e.g.:

git fetch upstream pull/1901/head:feature-fix-numpy

Note

Notice that we fetch from upstream, since that is the original
project, where the pull request is supposed to be

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 android	

 	
 	
 android.activity	

 	
 	
 android.broadcast	

 	
 	
 android.runnable	

 Index

Index

 _
 | A
 | B
 | S
 | U

_

 	
 	__init__() (android.broadcast.BroadcastReceiver method)

A

 	
 	android.activity (module)

 	
 	android.broadcast (module)

 	android.runnable (module)

B

 	
 	bind() (in module android.activity)

 	
 	BroadcastReceiver (class in android.broadcast)

S

 	
 	start() (android.broadcast.BroadcastReceiver method)

 	
 	stop() (android.broadcast.BroadcastReceiver method)

U

 	
 	unbind() (in module android.activity)

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 python-for-android

 		
 Getting Started

 		
 Concepts

 		
 Installation

 		
 Installing p4a

 		
 Installing Dependencies

 		
 Installing Android SDK

 		
 Usage

 		
 Build a Kivy or SDL2 application

 		
 Build a WebView application

 		
 Build a Service library archive

 		
 Exporting the Android App Bundle (aab) for distributing it on Google Play

 		
 Other options

 		
 Rebuild everything

 		
 Getting help

 		
 Advanced usage

 		
 Recipe management

 		
 Distribution management

 		
 Configuration file

 		
 Overriding recipes sources

 		
 setup.py file (experimental)

 		
 Going further

 		
 Build options

 		
 Python versions

 		
 Bootstrap options

 		
 sdl2

 		
 webview

 		
 service_library

 		
 Requirements blacklist (APK size optimization)

 		
 Commands

 		
 Commands index

 		
 General arguments

 		
 Distribution arguments

 		
 Working on Android

 		
 Storage paths

 		
 A note on permissions

 		
 Runtime permissions

 		
 Other common tasks

 		
 Dismissing the splash screen

 		
 Handling the back button

 		
 Pausing the App

 		
 Observing Activity result

 		
 Receiving Broadcast message

 		
 Runnable

 		
 Advanced Android API use

 		
 android for Android API access

 		
 Plyer - a more comprehensive API wrapper

 		
 Pyjnius - raw lowlevel API access

 		
 Launcher

 		
 Building

 		
 Usage

 		
 Release on the market

 		
 Source code

 		
 distutils/setuptools integration

 		
 Have p4a apk run setup.py (replaces –requirements)

 		
 Use your setup.py to call p4a

 		
 Adding p4a arguments in setup.py

 		
 Adding p4a arguments in setup.cfg

 		
 Recipes

 		
 Creating your own Recipe

 		
 Methods and tools to help with compilation

 		
 Patching modules before installation

 		
 Installing libs

 		
 Compiling for the Android architecture

 		
 Including files with your recipe

 		
 The should_build method

 		
 Using a PythonRecipe

 		
 Using a CythonRecipe

 		
 Using a CompiledComponentsPythonRecipe

 		
 Using an NDKRecipe

 		
 A Recipe template

 		
 Examples of recipes

 		
 The Recipe class

 		
 Bootstraps

 		
 Creating a new bootstrap

 		
 Services

 		
 Service creation

 		
 Service folder

 		
 Arbitrary service scripts

 		
 Service auto-restart

 		
 Troubleshooting

 		
 Debug output

 		
 Getting help

 		
 Debugging on Android

 		
 Unpacking an APK

 		
 Common errors

 		
 AttributeError: ‘AnsiCodes’ object has no attribute ‘LIGHTBLUE_EX’

 		
 AttributeError: ‘Context’ object has no attribute ‘hostpython’

 		
 linkname too long

 		
 Requested API target 19 is not available, install it with the SDK android tool

 		
 ModuleNotFoundError: No module named ‘_ctypes’

 		
 SSLError(“Can’t connect to HTTPS URL because the SSL module is not available.”)

 		
 Docker

 		
 Development and Contributing

 		
 Development model

 		
 Versioning

 		
 Creating a new release

 		
 Release checklist

 		
 How python-for-android uses pip

 		
 Basic concepts

 		
 Install process regarding packages

 		
 Overall process / package relevant notes for p4a

 		
 Ideas for the future regarding packaging

 		
 Testing an python-for-android pull request

 		
 Common steps

 		
 Fetch the pull request by number

 		
 Clone the pull request branch from the user’s fork

 		
 Using python-for-android commands directly from the pull request files

 		
